Plasticity in breathing and arterial blood pressure following acute intermittent hypercapnic hypoxia in infant rat pups with a partial loss of 5-HT neurons.

نویسندگان

  • Jennifer Magnusson
  • Kevin J Cummings
چکیده

The role of serotonin (5-HT) neurons in cardiovascular responses to acute intermittent hypoxia (AIH) has not been studied in the neonatal period. We hypothesized that a partial loss of 5-HT neurons would reduce arterial blood pressure (BP) at rest, increase the fall in BP during hypoxia, and reduce the long-term facilitation of breathing (vLTF) and BP following AIH. We exposed 2-wk-old, 5,7-dihydroxytryptamine-treated and controls to AIH (10% O2; n = 13 control, 14 treated), acute intermittent hypercapnia (5% CO2; n = 12 and 11), or acute intermittent hypercapnic hypoxia (AIHH; 10% O2, 5% CO2; n = 15 and 17). We gave five 5-min challenges of AIH and acute intermittent hypercapnia, and twenty ∼20-s challenges of AIHH to mimic sleep apnea. Systolic BP (sBP), diastolic BP, mean arterial pressure, heart rate (HR), ventilation (V̇e), and metabolic rate (V̇o2) were continuously monitored. 5,7-Dihydroxytryptamine induced an ∼35% loss of 5-HT neurons from the medullary raphe. Compared with controls, pups deficient in 5-HT neurons had reduced resting sBP (∼6 mmHg), mean arterial pressure (∼5 mmHg), and HR (56 beats/min), and experienced a reduced drop in BP during hypoxia. AIHH induced vLTF in both groups, reflected in increased V̇e and V̇e/V̇o2, and decreased arterial Pco2. The sBP of pups deficient in 5-HT neurons, but not controls, was increased 1 h following AIHH. Our data suggest that a relatively small loss of 5-HT neurons compromises resting BP and HR, but has no influence on ventilatory plasticity induced by AIHH. AIHH may be useful for reversing cardiorespiratory defects related to partial 5-HT system dysfunction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermittent severe hypoxia induces plasticity within serotonergic and catecholaminergic neurons in the neonatal rat ventrolateral medulla.

5-HT neurons contribute to autoresuscitation and survival during intermittent severe hypoxia (IsH). In adults, catecholaminergic neurons in the ventrolateral medulla (VLM) contribute to the autonomic response to hypoxia. We hypothesized that 1) catecholaminergic neurons in the neonatal VLM are activated following IsH, 2) this activation is compromised following an acute loss of brain stem 5-HT,...

متن کامل

Chronic intermittent hypercapnic hypoxia increases pulmonary arterial pressure and haematocrit in rats.

Sleep-disordered breathing is associated with pulmonary hypertension and raised haematocrit. The multiple episodes of apnoea in this condition cause chronic intermittent hypoxia and hypercapnia but the effects of such blood gas changes on pulmonary pressure or haematocrit are unknown. The present investigation tests the hypothesis that chronic intermittent hypercapnic hypoxia causes increased p...

متن کامل

Brain stem serotonin protects blood pressure in neonatal rats exposed to episodic anoxia.

In neonatal rodents, a loss of brain stem serotonin [5-hydroxytryptamine (5-HT)] in utero or at birth compromises anoxia-induced gasping and the recovery of heart rate (HR) and breathing with reoxygenation (i.e., autoresuscitation). How mean arterial pressure (MAP) is influenced after an acute loss of brain stem 5-HT content is unknown. We hypothesized that a loss of 5-HT for ∼1 day would compr...

متن کامل

Effect of intermittent hypercapnia on respiratory control in rat pups.

Preterm infants are subject to fluctuations in blood gas status associated with immature respiratory control. Intermittent hypoxia during early postnatal life has been shown to increase chemoreceptor sensitivity and destabilize the breathing pattern; however, intermittent hypercapnia remains poorly studied. Therefore, to test the hypothesis that intermittent hypercapnia results in altered respi...

متن کامل

HY POXIA AND I TS INFLUEN CES ON THE CARDIOVASCULAR AND RESPIRATORY SYSTEMS OF SPONTANEOUSLY BREATHING CATS

Effects of acute systemic hypoxia on the cardiovascular system (CYS) and respiration of spontaneously breathing cats were studied in two conditions. 1): Hypoxic air (6-8% 02 in N2) was given to the animal to induce systemic hypoxia for 20 minutes. Hyperventilation at this condition lowered arterial C02 tension (PaC02 hypocapnia). 2): In the second run, induction of hypocapnia was prevented ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 309 10  شماره 

صفحات  -

تاریخ انتشار 2015